Saturday 28 July 2012

Capacitor


Capacitor
A device used to store charge in an electrical circuit. A capacitor functions much like a battery, but charges and discharges much more efficiently (batteries, though, can store much more charge).
A basic capacitor is made up of two conductors separated by an insulator, or dielectric. The dielectric can be made of paper, plastic, mica, ceramic, glass, a vacuum or nearly any other nonconductive material. Some capacitors are called electrolytics, meaning that their dielectric is made up of a thin layer of oxide formed on a aluminum or tantalum foil conductor.
Capacitor electron storing ability (called capacitance) is measured in Farads. One Farad is actually a huge amount of charge (6,280,000,000,000,000,000 electrons to be exact), so we usually rate capacitors in microfarads (uF = 0.000,001F) and picofarads (pF = 0.000,000,000,001F ). Capacitors are also graded by their breakdown (i.e., smoke) voltage. Capacitors rated for lower voltages are generally smaller in size and weight; you don't want to use too low a voltage rating, though, unless you enjoy replacing burnt-out capacitors in your creation.
For BEAMbots, you'll need to know about 2 main types of capacitors:

Non-polarized fixed capacitor ImageImage A non-polarized ("non polar") capacitor is a type of capacitor that has no implicit polarity -- it can be connected either way in a circuit. Ceramic, mica and some electrolytic capacitors are non-polarized. You'll also sometimes hear people call them "bipolar" capacitors.


Polarized fixed capacitor Image
A polarized ("polar") capacitor is a type of capacitor that have implicit polarity -- it can only be connected one way in a circuit. The positive lead is shown on the schematic (and often on the capacitor) with a little "+" symbol. The negative lead is generally not shown on the schematic, but may be marked on the capacitor with a bar or "-" symbol. Polarized capacitors are generally electrolytics.
Note that you really need to pay attention to correctly hooking a polarized capacitor up (both with respect to polarity, as well as not pushing a capacitor past its rated voltage). If you "push" a polarized capacitor hard enough, it is possible to begin "electrolyzing" the moist electrolyte. Modern electrolytic capacitors usually have a pressure relief vent to prevent catastrophic failure of the aluminum can (but don't bet your eyesight on this).

No comments:

Post a Comment